Abstract

Some recent work in the theory of 3-manifolds and immersed surfaces indicates that the class of graph manifolds contains a large number of compact 3-manifolds whose fundamental groups are not subgroup separable (LERF). Rubinstein and Wang have given a criterion to determine whether or not a given horizontal surface in a graph manifold is separable (i.e., lifts to an embedded surface in some finite cover of the manifold). This paper extends the criterion to include some nonhorizontal surfaces in graph manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.