Abstract

SummaryButenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and a broad pesticidal spectrum. Currently, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficient understanding of its regulatory mechanism and improving its production by metabolic engineering. Here, we present data supporting a role of the SenX3-RegX3 system in regulating the butenyl-spinosyn biosynthesis. EMSAs and qRT-PCR demonstrated that RegX3 positively controls butenyl-spinosyn production in an indirect way. Integrated proteomic and metabolomic analysis, regX3 deletion not only strengthens the basal metabolic ability of S. pogona in the mid-growth phase but also promotes the flow of the acetyl-CoA produced via key metabolic pathways into the TCA cycle rather than the butenyl-spinosyn biosynthetic pathway, which ultimately leads to continued growth but reduced butenyl-spinosyn production. The strategy demonstrated here may be valuable for revealing the regulatory role of the SenX3-RegX3 system in the biosynthesis of other natural products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.