Abstract
The study examines public sentiment on the government's fuel price policy using an experimental approach and Twitter data obtained through API scraping. It applies sentiment analysis methods like Naïve Bayes, SVM, and Majority Voting. SVM achieved 85% accuracy, excelling in identifying negative sentiments, while Majority Voting reached 70% by considering confidence levels. Naïve Bayes struggled with neutral sentiments. They are combining methods to enhance the understanding of public sentiments on fuel price changes. The study highlights sentiment analysis' effectiveness in gauging reactions to fuel policies, with SVM offering more profound insights into sentiments related to fuel price hikes. Challenges remain in identifying neutral sentiments due to social media text brevity. These findings underscore the contextual importance of interpreting sentiment analysis. Leveraging these insights, governments can understand public perceptions better and devise improved communication strategies for sensitive economic policies like fuel price hikes, fostering better government-citizen interactions. The study aims to guide stakeholders in comprehending public perspectives within public policy, emphasizing the relevance of sentiment analysis for policy evaluation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have