Abstract
PurposeUp to date development in sentiment analysis has resulted in a symbolic growth in the volume of study, especially on more subjective text types, namely, product or movie reviews. The key difference between these texts with news articles is that their target is defined and unique across the text. Hence, the reviews on newspaper articles can deal with three subtasks: correctly spotting the target, splitting the good and bad content from the reviews on the concerned target and evaluating different opinions provided in a detailed manner. On defining these tasks, this paper aims to implement a new sentiment analysis model for article reviews from the newspaper.Design/methodology/approachHere, tweets from various newspaper articles are taken and the sentiment analysis process is done with pre-processing, semantic word extraction, feature extraction and classification. Initially, the pre-processing phase is performed, in which different steps such as stop word removal, stemming, blank space removal are carried out and it results in producing the keywords that speak about positive, negative or neutral. Further, semantic words (similar) are extracted from the available dictionary by matching the keywords. Next, the feature extraction is done for the extracted keywords and semantic words using holoentropy to attain information statistics, which results in the attainment of maximum related information. Here, two categories of holoentropy features are extracted: joint holoentropy and cross holoentropy. These extracted features of entire keywords are finally subjected to a hybrid classifier, which merges the beneficial concepts of neural network (NN), and deep belief network (DBN). For improving the performance of sentiment classification, modification is done by inducing the idea of a modified rider optimization algorithm (ROA), so-called new steering updated ROA (NSU-ROA) into NN and DBN for weight update. Hence, the average of both improved classifiers will provide the classified sentiment as positive, negative or neutral from the reviews of newspaper articles effectively.FindingsThree data sets were considered for experimentation. The results have shown that the developed NSU-ROA + DBN + NN attained high accuracy, which was 2.6% superior to particle swarm optimization, 3% superior to FireFly, 3.8% superior to grey wolf optimization, 5.5% superior to whale optimization algorithm and 3.2% superior to ROA-based DBN + NN from data set 1. The classification analysis has shown that the accuracy of the proposed NSU − DBN + NN was 3.4% enhanced than DBN + NN, 25% enhanced than DBN and 28.5% enhanced than NN and 32.3% enhanced than support vector machine from data set 2. Thus, the effective performance of the proposed NSU − ROA + DBN + NN on sentiment analysis of newspaper articles has been proved.Originality/valueThis paper adopts the latest optimization algorithm called the NSU-ROA to effectively recognize the sentiments of the newspapers with NN and DBN. This is the first work that uses NSU-ROA-based optimization for accurate identification of sentiments from newspaper articles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have