Abstract
Uncertainty in political, religious, and social issues causes extremism among people that are depicted by their sentiments on social media. Although, English is the most common language used to share views on social media, however, other vicinity based languages are also used by locals. Thus, it is also required to incorporate the views in such languages along with widely used languages for revealing better insights from data. This research focuses on the sentimental analysis of social media multilingual textual data to discover the intensity of the sentiments of extremism. Our study classifies the incorporated textual views into any of four categories, including high extreme, low extreme, moderate, and neutral, based on their level of extremism. Initially, a multilingual lexicon with the intensity weights is created. This lexicon is validated from domain experts and it attains 88% accuracy for validation. Subsequently, Multinomial Naïve Bayes and Linear Support Vector Classifier algorithms are employed for classification purposes. Overall, on the underlying multilingual dataset, Linear Support Vector Classifier out-performs with an accuracy of 82%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.