Abstract
This study explores the application of the Transformer model in sentiment analysis of tweets generated by ChatGPT. We used a Kaggle dataset consisting of 217,623 instances labeled as "Good", "Bad", and "Neutral". The Transformer model demonstrated high accuracy (90%) in classifying sentiments, particularly predicting "Bad" tweets. However, it showed slightly lower performance for the "Good" and "Neutral" categories, indicating areas for future research and model refinement. Our findings contribute to the growing body of evidence supporting deep learning methods in sentiment analysis and underscore the potential of AI models like Transformers in handling complex natural language processing tasks. This study broadens the scope for AI applications in social media sentiment analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.