Abstract
Abstract Social media are a rich source of user generated content where people express their views towards the products and services they encounter. However, sentiment analysis using machine learning models are not easy to implement in a time and cost effective manner due to the requirement of expert human annotators to label the training data. The proposed approach uses a novel method to remove the neutral statements using a combination of lexicon based approach and human effort. This is followed by using a deep active learning model to perform sentiment analysis to reduce annotation efforts. It is compared with the baseline approach representing the neutral tweets also as a part of the data. Considering brands require aspect based ratings towards their products or services, the proposed approach also categorizes predicting ratings of each aspect of mobile device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.