Abstract

During installation operations offshore pipes are often strained beyond yielding. Due to the high loading condition and the high costs of these operations it is important with accurate defect assessment analysis to avoid delays caused by unnecessary repairs or failure because of flaws that should have been detected and repaired. There is therefore a need for an accurate assessment procedure that can be a tool for defect assessment analysis for this application. It is commonly accepted that the fracture toughness is dependent on the geometry constraint at the crack tip. The traditional single edge notch bend (SENB) specimens have a high geometry constraint, and give lower bound fracture toughness for all geometries. For reeling operations these fracture toughness values are often too low to be used in defect assessment of reeling operations. The same is the assumption of plastic collapse when the net section stress is equal to the average between the yield strength and tensile strength. In this paper, the single edge notch tension specimen (SENT) is presented as an alternative fracture mechanics specimen. This specimen has a geometry constraint that is much closer to flaws in pipes than SENB specimens, which will give more realistic fracture properties of the pipe. In the procedure for defect assessments we present, both the fracture toughness and plastic collapse properties are taken from testing of SENT specimens. FE simulations and full scale testing verify the procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call