Abstract

The patterns of regional cerebral blood flow (rCBF) increases and decreases in PET were compared for unimodal vestibular, unimodal visual, and for simultaneous vestibular and visual stimulation. Thirteen healthy volunteers were exposed to a) caloric vestibular stimulation, b) small-field visual motion stimulation in roll, c) simultaneous caloric vestibular and visual pattern stimulation. Unimodal vestibular stimulation led to activations of vestibular cortex areas, in particular the parieto-insular vestibular cortex (PIVC), and concurrent deactivations of visual cortical areas [Brodmann area (BA) 17-19]. Unimodal visual motion stimulation led to activations of the striate visual cortex and the motion-sensitive area in the middle temporal/middle occipital gyri (BA 19/37) with concurrent deactivations in the PIVC. Simultaneous bimodal stimulation resulted in activations of the cortical representation of both sensory modalities. In the latter condition activations and deactivations were significantly smaller compared to unimodal stimulation. The findings are consistent with the concept of an inhibitory reciprocal vestibulo-visual interaction in all three stimulus conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.