Abstract

This paper proposes a novel torque and speed control structure for low-cost induction motor variable-speed drives with a single DC-link current sensor. The controller is based on reconstruction of the active and instantaneous reactive power from the DC-link current without the use of a shaft sensor. An effective way of achieving tracking of set values of motor torque and flux is to base the estimation on the instantaneous active (P) and reactive power (Q). The paper proposes a way for extracting instantaneous P and Q information from the DC-link current and the pulsewidth modulation pattern. Torque and flux controllers suitable for general purpose and traction applications are proposed. The paper presents analytical considerations, straightforward design guidelines, and experimental results obtained from a traction system with a battery-fed three-phase inverter and a 7.5 kW traction motor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call