Abstract
The industrial requirements for the control of an induction machine without a mechanical sensor continue to be of interest, as evidenced by the most recent publications. The focus is on improvements of control without a mechanical sensor. A new method for the implementation of a sensorless indirect stator-flux-oriented control (ISFOC) of a single-phase induction motor (SPIM) drive is proposed in this paper. The proposed method of rotor speed estimation is based only on the measurement of the main and auxiliary windings stator currents and that of a reference <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</i> -axis current generated by the control algorithm. The error of the measured <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</i> -axis current from its reference value feeds the proportional plus integral controller, the output of which is the estimated slip angular frequency. Experimental results for sensorless ISFOC speed control of a SPIM drive are presented and analyzed using a dSPACE system with DS1104 controller board based on the digital signal processor TMS320F240. Digital simulation and experimental results are presented to show the improvement in performance of the proposed sensorless algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.