Abstract

A global artificial neural network (ANN), algorithm for on-line speed control of a three-phase induction motor (IM), is proposed. This algorithm is based on the optimal preview controller. It comprises a novel error system and vector control of the IM. The IM model includes three input variables, which are the stator angular frequency and the two components of the stator space voltage vector, and three output variables, which are the rotor angular velocity and the two components of the stator space flux linkage. The objective of the proposed algorithm is to achieve rotor speed control, field orientation control and constant flux control. In order to emulate the characteristic of the optimal preview controller within global and accurate performance system, a neural network-based technique for the on-line purpose of speed control of IM, is implemented. This technique is utilized based on optimizing the speed control problem using the optimal preview control law. The numerical solution is used to train a feed ANN using the radial basis method. Successive trained data is utilized to obtain global stability operation for the IM over the whole control intervals. This data includes, several desired speed trajectories and different load torque operations in addition to the motor parameter variations. Digital computer simulation results have been carried-out to demonstrate the feasibility, reliability and effectiveness of the proposed global ANN algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.