Abstract

BackgroundThe pathophysiology of concussion is complex. Altered sensorimotor function post-concussion may contribute to the wide range of symptoms and impairments reported. There is currently limited evidence documenting changes in sensorimotor function during the recovery period. The aim of this study was to investigate the effect of concussion on the sensorimotor system in adolescents post-concussion using a multifaceted approach. Study designProspective nested case-control study. MethodsA total of 285 male adolescent rugby players underwent assessment of sensorimotor function during preseason. Players who sustained a concussion during the season and control players, matched for age and playing position, were assessed in the subacute period (3–5 days) and after return-to-sport (3 weeks). Tests of sensorimotor function included balance, cervical spine and vestibulo-ocular function, and measurement of the size and contraction of lumbopelvic muscles (ultrasound imaging). ResultsTwenty-three players (8%) sustained a concussion. Of these, 20 players were assessed during the subacute period and 17 players following return-to-sport. The prevalence of vestibulo-ocular dysfunction increased from 38.9% to 72.2% during the subacute period and dysfunction was present in 83.3% of players after return-to-sport (p = 0.01). Changes in lumbar multifidus muscle size (p = 0.002) and thickness (p = 0.05) at the L5 vertebral level were observed. No statistically significant changes in balance, cervical spine proprioception, or contraction of lumbopelvic muscles were found (p > 0.05). ConclusionChanges in sensorimotor function were observed in the subacute period post-concussion, with some persisting after return-to-sport. Using symptom-based criteria for return-to-sport may not adequately reflect the sequelae of concussion on the sensorimotor system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call