Abstract
The existence of biases in visual perception and their impact on visually guided actions has long been a fundamental yet unresolved question. Evidence revealing perceptual or visuomotor biases has typically been disregarded because such biases in spatial judgments can often be attributed to experimental measurement confounds. To resolve this controversy, we leveraged the visuomotor system’s adaptation mechanism — triggered only by a discrepancy between visual estimates and sensory feedback — to directly indicate whether systematic errors in perceptual and visuomotor spatial judgments exist. To resolve this controversy, we leveraged the adaptive mechanisms of the visuomotor system to directly reveal whether systematic biases or errors in perceptual and visuomotor spatial judgments exist. In a within-subject study (N=24), participants grasped a virtual 3D object with varying numbers of depth cues (single vs. multiple) while receiving haptic feedback. The resulting visuomotor adaptations and aftereffects demonstrated that the planned grip size, determined by the visually perceived depth of the object, was consistently overestimated. This overestimation intensified when multiple cues were present, despite no actual change in physical depth. These findings conclusively confirm the presence of inherent biases in visual estimates for both perception and action, and highlight the potential use of visuomotor adaptation as a novel tool for understanding perceptual biases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have