Abstract
Human activity recognition can be exploited to benefit ubiquitous applications using sensors. Current research on sensor-based activity recognition is mainly using data-driven or knowledge-driven approaches. In terms of complex activity recognition, most data-driven approaches suffer from portability, extensibility and interpretability problems, whilst knowledge-driven approaches are often weak in handling intricate temporal data. To address these issues, we exploit time series shapelets for complex human activity recognition. In this paper, we first describe the association between activity and time series transformed from sensor data. Then, we present a recursively defined multilayered activity model to represent four types of activities and employ a shapelet-based framework to recognize various activities represented in the model. A prototype system was implemented to evaluate our approach on two public datasets. We also conducted two real-world case studies for system evaluation: daily living activity recognition and basketball play activity recognition. The experimental results show that our approach is capable of handling complex activity effectively. The results are interpretable and accurate, and our approach is fast and energy-efficient in real-time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.