Abstract
Wearable device based human activity recognition, as an important field of ubiquitous and mobile computing, is drawing more and more attention. Compared with simple human activity (SHA) recognition, complex human activity (CHA) recognition faces more challenges, e.g., various modalities of input and long sequential information. In this paper, we propose a deep learning model named DEBONAIR (Deep lEarning Based multimodal cOmplex humaN Activity Recognition) to address these problems, which is an end-to-end model extracting features systematically. We design specific sub-network architectures for different sensor data and merge the outputs of all sub-networks to extract fusion features. Then, a LSTM network is utilized to learn the sequential information of CHAs. We evaluate the model on two multimodal CHA datasets. The experiment results show that DEBONAIR is significantly better than the state-of-the-art CHA recognition models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.