Abstract

An ultra-high sensitivity multi-molecule sensor based on a photo-acoustic cell with two perpendicular acoustic resonators and a common microphone has been reported. In this work, a 4.5µm distributed-feedback quantum cascade laser and a 1.5µm external cavity diode laser (EC-DL) were used as optical excitation sources. Considering the spectral ranges of the lasers used, it is possible to analyze eight molecules (Q C L:N 2 O and C O 2, EC-DL: H 2 O, H 2 S, N H 3, CO, C H 4, and C 2 H 2). The N 2 O molecule was used to evaluate the performance of the photo-acoustic spectroscopy (PAS)-based sensor. A sensitivity of 0.073V/ppm and a linearity of 0.99 were found by analyzing the PAS signal as a function of N 2 O concentration at 2237.656c m -1. The long-term performance of the sensor was determined by performing an Allan deviation analysis. A minimum detection limit of 9.8ppb for 90s integration time was achieved. The simultaneous multi-trace gas detection capability was verified by measurement of N 2 O, C O 2, and H 2 O. Depending on the coarse/fine-tuning ranges of the lasers used, the number of molecules analyzed can be further increased. Such a sensor could provide simultaneous diagnosis of many diseases through an analysis of breath air and simultaneous monitoring of the most important greenhouse gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call