Abstract

A challenging issue in design and implementation of an effective structural health monitoring (SHM) system is to determine where a number of sensors are properly installed. In this paper, research on the optimal sensor placement (OSP) is carried out on the Canton Tower (formerly named Guangzhou New Television Tower) of 610 m high. To avoid the intensive computationally-demanding problem caused by tens of thousands of degrees of freedom (DOFs) involved in the dynamic analysis, the three dimension finite element (FE) model of the Canton Tower is first simplified to a system with less DOFs. Considering that the sensors can be physically arranged only in the translational DOFs of the structure, but not in the rotational DOFs, a new method of taking the horizontal DOF as the master DOF and rotational DOF as the slave DOF, and reducing the slave DOF by model reduction is proposed. The reduced model is obtained by IIRS method and compared with the models reduced by Guyan, Kuhar, and IRS methods. Finally, the OSP of the Canton Tower is obtained by a kind of dual-structure coding based generalized genetic algorithm (GGA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.