Abstract

Abstract A passive controlled ankle foot orthosis (PICAFO) used a passive actuator such as Magnetorheological (MR) brake to control the ankle stiffness. The PICAFO used two kinds of sensors, such as Electromyography (EMG) signal and ankle position (two inputs) to determine the amount of stiffness (one output) to be generated by the MR brake. As the overall weight and design of an orthotic device must be optimized, the sensor numbers on PICAFO wanted to be reduced. To do that, a machine learning approach was implemented to simplify the previous stiffness function. In this paper, Non-linear Autoregressive Exogeneous (NARX) neural network were used to generate the simplified function. A total of 2060 data were used to build the network with detail such as 1309 training data, 281 validation data, 281 testing data 1, and 189 testing data 2. Three training algorithms were used such as Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient. The result shows that the function can be simplified into one input (ankle position) – one output (stiffness). Optimized result was shown by the NARX neural network with 15 hidden layers and trained using Bayesian Regularization with delay 2. In this case, the testing data shows R-value of 0.992 and MSE of 19.16.

Highlights

  • A passive controlled ankle foot orthosis (PICAFO) used a passive actuator such as Magnetorheological (MR) brake to control the ankle stiffness

  • The previous work has shown work on a PICAFO equipped with MR brake, in which the damping stiffness was controlled using the Fuzzy controller based on the EMG and ankle position

  • The damping stiffness of a Passive Controlled Ankle Foot Orthosis (PICAFO) for preventing foot drop had been successfully estimated based on EMG and ankle position

Read more

Summary

Introduction

Abstract: A passive controlled ankle foot orthosis (PICAFO) used a passive actuator such as Magnetorheological (MR) brake to control the ankle stiffness. The PICAFO used two kinds of sensors, such as Electromyography (EMG) signal and ankle position (two inputs) to determine the amount of stiffness (one output) to be generated by the MR brake. A machine learning approach was implemented to simplify the previous stiffness function. Non-linear Autoregressive Exogeneous (NARX) neural network were used to generate the simplified function. The result shows that the function can be simplified into one input (ankle position) – one output (stiffness). Optimized result was shown by the NARX neural network with 15 hidden layers and trained using Bayesian Regularization with delay 2. In this case, the testing data shows Rvalue of 0.992 and MSE of 19.16

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call