Abstract
이 연구에서는 MR 브레이크를 이용하는 새로운 형태의 햅틱 그리퍼를 제안하였다. 이를 위하여, 다양한 형태의 MR 브레이크를 고려한 뒤, 각 MR 브레이크의 제동 토크와 점성 마찰토크를 빙햄 모델에 기반하여 분석하였다. MR 브레이크의 최적설계를 위해 유한요소법과 최적화 toolbox를 통합한 새로운 알고리즘이 고안되었으며, 점성 마찰토크는 필요 제동 토크보다 작도록 구속조건을 설정하였다. 이러한 최적 설계 알고리즘을 통하여 적절한 제동 토크를 시스템에 부하할 수 있으며 무게가 최소화된 MR 브레이크를 설계할 수 있었다. 그리고 최적 설계된 MR 브레이크의 성능 또한 고찰하였다. In this work, the configuration of a haptic gripper featuring magnetorheological(MR) brakes is proposed and an optimal design of the MR brakes for the haptic griper is performed considering the required braking torque, the uncontrollable torque(zero-field friction torque) and mass of the brakes. Several configurations of MR brake is proposed such as disc-type, serpentine-type and hybrid-type. After the configurations of the MR brakes are proposed, braking torque of the brakes is analyzed based on Bingham rheological model of the MR fluid. The zero-field friction torque of the MR brakes is also analyzed. An optimization procedure based on finite element analysis integrated with an optimization toolbox is developed for the MR brakes. The purpose of the optimal design is to find optimal geometric dimensions of the MR brake structure that can produce the required braking torque and minimize the mass of the MR brakes. In addition, the uncontrollable torque of the MR brakes is constrained to be much smaller than the required braking torque. Based on the developed optimization procedure, optimal solution of the proposed MR brakes are achieved and the best MR brake is determined. The working performance of the optimized MR brake is then investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Korean Society for Noise and Vibration Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.