Abstract

In the present study, a sensor-free force control framework for tendon-driven steerable catheters was proposed and validated. The hypothesis of this study was that the contact force between the catheter tip and the tissue could be controlled using the estimated force with a previously validated displacement-based viscoelastic tissue model. The tissue model was used in a feedback control loop. The model estimated the contact force based on a realtime estimation of catheter-tissue indentation depth performed by a data-driven inverse kinematic model. To test the hypothesis, a tendon-driven catheter (φ6 × 40mm) and a robotic catheter intervention system were prototyped and characterized. Three validation studies were performed to test the performance of the proposed system with static and dynamic inputs. The results showed that the system was capable of reaching to the desired force with a root-mean-square error of 0.03 ± 0.02N for static tests and 0.05 ± 0.04N for dynamic inputs. The main contribution of this study was providing a computationally efficient and sensor-free force control schema for tendon-driven catheters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.