Abstract

The growth of the automated welding sector and emerging technological requirements of Industry 4.0 have driven demand and research into intelligent sensor-enabled robotic systems. The higher production rates of automated welding have increased the need for fast, robotically deployed Non-Destructive Evaluation (NDE), replacing current time-consuming manually deployed inspection. This paper presents the development and deployment of a novel multi-robot system for automated welding and in-process NDE. Full external positional control is achieved in real time allowing for on-the-fly motion correction, based on multi-sensory input. The inspection capabilities of the system are demonstrated at three different stages of the manufacturing process: after all welding passes are complete; between individual welding passes; and during live-arc welding deposition. The specific advantages and challenges of each approach are outlined, and the defect detection capability is demonstrated through inspection of artificially induced defects. The developed system offers an early defect detection opportunity compared to current inspection methods, drastically reducing the delay between defect formation and discovery. This approach would enable in-process weld repair, leading to higher production efficiency, reduced rework rates and lower production costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.