Abstract

Cu-doped ZnO nanopowders and their composites of polypyrole (PPY)/CZO were prepared by a gel combustion method and an in-situ polymerization process, respectively. The synthesized nanocomposite are characterized by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), FTIR, and TGA studies. Then the PPY/CZO/AgE nanocomposites were used for potential application in chemical sensing by easy and reliable I–V method, where 1,2 dichlorobenzene (1,2-DCB) is considered as a model target compound. The chemical sensor performances are exhibited the higher sensitivity, good stability, and repeatability of the sensor enhanced significantly using PPY/CZO/AgE of thin-film with conducting binders on silver electrodes (AgE; Surface area: 0.0216cm2). The calibration plot is linear over the large dynamic range (0.35nM∼3.5mM), where the sensitivity (∼2.702μAmM−1cm−2) and detection limit (∼0.34nM) is calculated based on signal/noise ratio (∼3N/S) in short response time. Finally, it is concluded that the structural and optical characteristics could be encompassed to a broad-scale in PPY/CZO/AgE composites and efficient chemical sensor applications for environmental fields. Simultaneously PPY/CZO composites was also evaluated against Gram positive bacteria Bacillus subtilis, Gram negative bacteria Escherichia coli and antibiotics (Amoxicillin) using the agar plate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.