Abstract
Due to numerous potential applications of semiconductor transition metal-doped nanomaterials and the great advantages of hydrothermal synthesis in both cost and environmental impact, a significant effort has been employed for growth of copper oxide codoped zinc oxide (CuO codoped ZnO) nanostructures via a hydrothermal route at room conditions. The structural and optical properties of the CuO codoped ZnO nanorods were characterized using various techniques such as UV-visible, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), etc. The sensing performance has been executed by a simple and reliable I-V technique, where aqueous ammonia is considered as a target analyte. CuO codoped ZnO nanorods of thin film with conducting coating agents on silver electrodes (AgE, surface area of 0.0216 cm(2)) displayed good sensitivity, stability, and reproducibility. The calibration plot is linear over the large dynamic range, where the sensitivity is approximately 1.549 ± 0.10 μA cm(-2 )mM(-1) with a detection limit of 8.9 ± 0.2 μM, based on signal/noise ratio in short response time. Hence, on the bottom of the perceptive communication between structures, morphologies, and properties, it is displayed that the morphologies and the optical characteristics can be extended to a large scale in transition-metal-doped ZnO nanomaterials and efficient chemical sensors applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.