Abstract
PurposeFlexible hydrogenated amorphous silicon (a-Si:H) solar cells have many advantages, including lower weight, good flexibility and light sensitivity. Moreover, a-Si:H solar cells can be used as sensors, as indoor light sources and can also generate electricity. These solar cells are suitable for the design of portable systems and curved materials. The purpose of this study was to integrate flexible a-Si:H solar cells and wearable technology and to apply the dual functions of photovoltaics and photo sensors to smart clothing and eyewear.Design/methodology/approachThe integration of flexible a-Si:H solar cells and tri-colour light-emitting diodes (LEDs) was used to develop smart auto-flashing clothing. In addition, we combined flexible a-Si:H solar cells and twisted nematic (TN) liquid crystal (LC) cells to design smart self-activation eyewear.FindingsThe maximum power resistance value of flexible a-Si:H solar cells was used to deduce the equation of solar cell voltage value generated by different percentages of SUN (100% SUN means 100 mW/cm2). A solar cell was used as a photo sensor that connects a resistor in a series to the Arduino to detect the voltage value, and then different percentages of SUN are calculated from the equation. Applying the deduced equation to the smart phone APP and Arduino code, we developed a human–machine interface (HMI) to facilitate user operation.Originality/valueIn this study, the flexible a-Si:H solar cell performs the function of not only photovoltaic power generation but also that of a photo sensor. The smart auto-flashing clothing is suitable for traffic guides, joggers and people engaging in other night activities. This smart self-activating eyewear can adjust to light and protect the eyes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Clothing Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.