Abstract
Purpose This study aims to explore the traditional plant dyeing of Xinjiang Atlas silk fabrics, providing references for the comprehensive utilization of plant dyes in intangible cultural heritage.Design/methodology/approach The focus of this study is on dyeing experiments of Atlas silk fabrics using safflower extracts, constrained by regional resources. Safflower dry flowers grown in Xinjiang were selected, rinsed with pure water and rubbed. Yellow pigments were removed by adding edible white vinegar. Red pigments from safflower were extracted using an alkaline solution prepared with Populus euphratica ash, a special product of Xinjiang. The extraction rate was analyzed under varying material-to-liquor ratios, pH values, times and temperatures. Direct dyeing process experiments were conducted to obtain different colorimetric L, a, b and K/S values for comparison. Samples with good color development were selected to test the impact of dyeing immersions on color development, and their color fastness, UV protection and antibacterial effects were verified.FindingsThe dyeing experiments on silk fabrics confirmed their UV protection capabilities and antibacterial properties, demonstrating effectiveness against E. coli and Staphylococcus aureus. As a major producer of safflower, Xinjiang underscores the significance of safflower as an essential plant dyes on the Silk Road. This study reveals its market potential and suitability for use in the plant dyeing process of Atlas silk, producing vibrant red and pink colors.Originality/valueThe experiments indicated that after removing yellow pigments, the highest extraction rate of red pigment from safflower was achieved at a pH value of 10–11, a temperature of 30°C and an extraction time of 40 min. The best bright red color effect with strong color fastness was obtained with a material-to-liquor ratio of 1:20, a temperature of 40°C and three immersions. The best light pink color effect with strong color fastness was a material-to-liquor ratio of 1:80, a temperature of 30°C and two immersions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Clothing Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.