Abstract

SUMMARY: Spores of Bacillus and Clostridium species were subjected to oxidizing and reducing agents known to rupture protein disulphide bonds and to irradiation (ultraviolet; high speed electron). These treatments caused no loss of brightness of spores when viewed by phase-contrast microscopy. However, lysozyme or hydrogen peroxide caused phase darkening of treated spores and loss of dipicolinic acid typical of normal germination except that hydrogen peroxide eventually caused almost complete lysis of the spores. Under certain conditions, spore viability was unaffected during treatment with reducing agents and during subsequent phase darkening in lysozyme. Spores made susceptible to lysozyme by reducing agents became insusceptible after storage in aerated water. These reactions are compatible with Vinter's observation of the high content of disulphide bonds in the coat fraction of spores (Vinter, 1960) and with the chemical or physical rupture of these bonds. Rupture of disulphide bonds allows action of lysozyme or hydrogen peroxide on previously protected substrates. The disulphide bonds are therefore probably important in the resistance of spores to enzymes and irradiation, and rupture of these bonds may be involved in the germination process. The probable location of the lysozyme substrate in mucopeptide of the spore cortex indicates the importance of the integrity of cortex structure in maintaining the phase brightness of spores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.