Abstract

We discuss prospects for probing short-range sterile neutrino oscillation using neutrino-nucleus coherent scattering with ultra-low energy ($\sim 10$ eV - 100 eV) recoil threshold cryogenic Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A\&M University, and references developing technology based upon economical and scalable detector arrays. The baseline of the experiment is substantially shorter than existing measurements, as near as about 2 meters from the reactor core, and is moreover variable, extending continuously up to a range of about 10 meters. This proximity and variety combine to provide extraordinary sensitivity to a wide spectrum of oscillation scales, while facilitating the tidy cancellation of leading systematic uncertainties in the reactor source and environment. With 100~eV sensitivity, for exposures on the order of 200 kg$\cdot$y, we project an estimated sensitivity to first/fourth neutrino oscillation with a mass gap $\Delta m^2 \sim 1 \, {\rm eV}^2$ at an amplitude $\sin^2 2\theta \sim 10^{-1}$, or $\Delta m^2 \sim 0.2 \, {\rm eV}^2$ at unit amplitude. Larger exposures, around 5,000 kg$\cdot$y, together with 10 eV sensitivity are capable of probing more than an additional order of magnitude in amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.