Abstract

The short-baseline neutrino oscillation experiments, the excess of radiation from the measurement of the cosmic microwave background radiation, the necessity of the nonbaryonic dark matter candidate and the depletion of the neutrino flux in IceCube all seem to hint at new physics beyond the standard model. An economical way to address these issues is to invoke the existence of sterile neutrinos. We present simple extensions of the standard model with additional three sterile neutrinos and discuss the corresponding PMNS like neutrino flavor mixing matrix. The noteworthy features of the sterile neutrino scenario advocated here is that the lightest one is almost degenerate with one of the active neutrinos, the second sterile has mass of order eV and the heaviest one is in the keV range. In the present scenario, the short baseline anomaly is explained through $\Delta m^2\sim 1\, {\rm eV^2}$, the depletion of muon neutrino flux in IceCube is explained through $\Delta m^2\sim 4.0\times 10^{-16}\, {\rm eV^2}$ and the dark matter problem is addressed through $\Delta m^2\sim 1\, {\rm keV^2}$. Our proposed mixing matrix is also compatible with the observed neutrino oscillation data. We show that the high energy muon and the tau neutrino fluxes from Gamma Ray Bursts can be depleted in IceCube by as much as 38% and 43% respectively. These substantial depletion in both muon and tau neutrino fluxes is due to their small but sizable mixing with the sterile neutrinos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.