Abstract
ABSTRACT Soil moisture estimation is a key component in hydrological processes and irrigation amounts' estimation. The synergetic use of optical and radar data has been proven to retrieve the surface soil moisture at a field scale using the Water Cloud Model (WCM). In this work, we evaluate the impact of staellite-derived vegetation descriptors to estimate the surface soil moisture. Therefore, we used the Sentinel-1 data to test the polarization ratio ( σ V H 0 / σ V V 0 ) and the normalized polarization ratio (IN) and the frequently used optical Normalized Difference vegetation Index (NDVI) as vegetation descriptors. Synchronous with Sentinel-1 acquisitions, in situ soil moisture were collected over wheat fields in the Kairouan plain in the center of Tunisia. To avoid the bare soil roughness effect and the radar signal saturation in dense vegetation context, we considered the data where the NDVI values vary between 0.25 and 0.7. The soil moisture inversion using the WCM and NDVI as a vegetation descriptor was characterized by an RMSE value of 5.6 vol.%. A relatively close performance was obtained using IN and ( σ V H 0 / σ V V 0 ) with RMSE under 7. 5 vol.%. The results revealed the consistency of the radar-derived data in describing the vegetation for the retrieval of soil moisture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.