Abstract
Soil moisture is essential for water resources management, yet accurate information of soil moisture has been a challenge. The major goal was to parametrize the Modified Water Cloud Model (MWCM). The Sentinel-1A data of winter wheat crop was collected for two weeks. Concurrently, in-situ soil moisture data was collected using Time Domain Reflectometer (TDR). A parametric scheme was used for the retrieval of the VV polarization of Sentinel-1A. The effect of NDVI as a vegetation descriptors (V1 and V2) on total VV backscatter (σ 0) was analyzed. The calibration showed NDVI has the potential to influence Water Cloud Model (WCM) and vegetation descriptors; hence it is recommended to calibrate the MWCM. The coefficient of determination (R2 = 0.83) showed a good agreement between observed and estimated soil moisture. Therefore, this approach help improve soil moisture prediction, and can be applied to determine soil moisture more accurately for winter crops, grasses, and pasture lands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.