Abstract

The synthesis of five quaternary hexagonal tungsten bronze (HTB) fluorides, AxM2+xM3+(1-x)F3, (A = Cs and Rb; M2+ = Co2+, Ni2+, and Zn2+; and M3+ = V3+) via a mild hydrothermal route is reported. The crystal structures and compositions were determined using a combination of single-crystal X-ray diffraction, Rietveld refinement of powder X-ray diffraction data, and inductively coupled plasma optical emission spectroscopy analysis. This study highlights the sensitivity of the mild hydrothermal method on the reaction temperature, solvent system, and quantity of starting reagents that directly influence the selective synthesis of kinetically stabilized fluoride materials, including hydrated fluorides, β-pyrochlores, and HTB. The magnetic susceptibility and isothermal magnetization data for all five compounds were collected, which revealed the existence of a strong antiferromagnetic component in these phases. The presence of the Kagome layer in the structure results in geometrical frustration and leads to frustration indexes ranging from 7 to 13 for these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.