Abstract

The prediction of the cyclic deformation behaviour in lath martensite-based high-strength steels requires constitutive models that reflect the local stress and strain fields as accurately as possible. At the same time, the constitutive models should act as efficiently as possible in order to achieve the required high number of cycles in a finite time. Only few research works have studied the sensitivity of the local cyclic deformation in lath martensite to the power law-based flow rule (Hutchinson or Chaboche–Cailletaud) and the active body-centred cubic (bcc) slip systems ({110}〈111〉 and {112}〈111〉) in the crystal plasticity finite element method (CPFEM). This paper, therefore, aims to provide some guidance in the selection of suitable flow rule and slip systems. Based on full-field micromechanical modelling of a medium-carbon steel under symmetric strain-controlled cyclic loading, it can be shown that the two most commonly used flow rules according to Hutchinson and Chaboche–Cailletaud are equally capable of predicting the local stress and strain distributions within the hierarchical martensitic microstructure. However, using the Hutchinson flow rule increases the computational performance for the quasi-rate-independent problem considered here. The local distributions found differ strongly from those in the parent austenitic microstructure. If plastic deformation is assumed not only on the slip systems {110}〈111〉, as often done, but also on the {112}〈111〉 type, a redistribution of the bimodal distributed local stresses occurs at a significantly lower stress level. The unimodal distributed local strains are less affected by this. In addition, it is found that slightly different critical resolved shear stress (CRSS) values for both slip system types influence the local stress and strain distributions less severely than the additional plastic slip activation in the material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call