Abstract

Multichannel surface electromyograms (EMGs) were used to examine the sensitivity of EMG-EMG coherence to infer changes in common oscillatory drive to hand muscles in young and older adults. Previous research has shown that measures of coherence calculated from different neurophysiological signals are influenced by the age of the subject, the visual feedback provided to the subject, and the task being performed. The change in the magnitude of EMG-EMG coherence across experimental conditions is often interpreted as a change in the oscillatory drive to motoneuron pools of a pair of muscles. However, signal processing (e.g., full-wave rectification) and electrode location are also reported to influence EMG-EMG coherence, which could decrease the sensitivity of EMG-EMG coherence to infer a change in common oscillatory drive to motoneurons. In this study, multichannel EMGs were used to compare EMG-EMG coherence in young (n = 11) and older (n = 10) adults during index finger abduction and pinch grip tasks performed at 2 and 3.5 N with a low and a high visual feedback gain. We found that, across all conditions, EMG-EMG coherence was influenced by electrode location (P < 0.001) but not by subject age, visual feedback gain, task, or signal processing. These results suggest that EMG-EMG coherence is most sensitive to electrode location. The results are discussed in terms of the potential issues related to inferring a common oscillatory drive to hand muscles with surface EMGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.