Abstract

For spatial-resolved diffuse reflectance, the sensitivity expression to the reduced scattering parameter μs' is derived and numerically analyzed in the two-point-source delta-P1 approximation of transport theory, and the influences of the scattering parameter μs' on the delta-P1 approximation reflectance, hybrid diffuse approximation reflectance, and diffusion approximation reflectance are also compared. The results show that the optical properties of biological tissue can be better described by the delta-P1 approxiamate model in relatively high scattering and absorbing medium for a short souce-detector separation; the optimum probe spacing ρopt is obtained and approximately equal to 2.7-4 transport mean free path for the reduced albedo a'>0.83, at which a variable reduced scattering coefficient has the smallest effect on the measurement of optical absorption in the turbid medium and ρopt reduces with the scattering parameter μs' increasing. The study is of great significance for optimizing the probe geometry and measuring the optical parameters of biological tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.