Abstract
BackgroundGenetically engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have been grown in Hawai’i for over 10 years. In Hawai’i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities.ResultsWe assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%.ConclusionsThis method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai’i for the presence of transgenic seed at typical regulatory threshold levels. Incorporation of subtle differences in primers and probes for variations in cp worldwide should allow this method to be utilized elsewhere when and if deregulation of transgenic papaya occurs.
Highlights
Engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have been grown in Hawai’i for over 10 years
We investigated transgene detection limit in Genetically engineered (GE) and non-GE papaya in different ratios of GE and non-GE papaya seed mixtures
In Hawai’i, because of close proximity of commercial fields of conventional and GE papaya plants, a situation exists in which adventitious presence of transgenes might occur at low frequency in non-GE fields [16,26,27]
Summary
Engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have been grown in Hawai’i for over 10 years. In Hawai’i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Papaya (Carica papaya L.) is widely grown in tropical and subtropical regions for its nutritional benefits and medicinal applications. It is among the top 10 commodities produced in Hawai’i, USA with a farm gate value of $11.1 million in 2010 [2]. It is a polygamous diploid (2n = 18) plant species with a complex breeding system including dioecious and gynodioecious forms that are manifested through individuals being male, female, or hermaphrodites [3,4]. Cross-pollination has been reported in hermaphrodite papayas at various levels depending upon a number of factors such as morphological relationships of stamens and stigma, timing of anther dehiscence relative to flower anthesis, and incidence of insect pollinators [5,6,7,8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have