Abstract
The single event effect (SEE) sensitivity of silicon–germanium heterojunction bipolar transistor (SiGe HBT) irradiated by 100-MeV proton is investigated. The simulation results indicate that the most sensitive position of the SiGe HBT device is the emitter center, where the protons pass through the larger collector-substrate (CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-MeV proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly. Notably, at the same proton flux, there is only one single event transient (SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-MeV protons. To further evaluate the tolerance of the device, the influence of proton on SiGe HBT after gamma-ray (60Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.