Abstract

Proline is prevalent in intrinsically disordered proteins (IDPs). NMR assignment of proline-rich IDPs is a challenge due to low dispersion of chemical shifts. We propose here new sensitivity-enhanced 4D NMR experiments that correlate two pairs of amide resonances that are either consecutive (NH i-1, NH i) or flanking a proline at position i-1 (NH i-2, NH i). The maximum 2-fold enhancement of sensitivity is achieved by employing two coherence order-selective (COS) transfers incorporated unconventionally into the pulse sequence. Each COS transfer confers an enhancement over amplitude-modulated transfer by a factor of √2 specifically when transverse relaxation is slow. The experiments connect amide resonances over a long fragment of sequence interspersed with proline. When this method was applied to the proline-rich region of B cell adaptor protein SLP-65 (pH 6.0) and α-synuclein (pH 7.4), which contain a total of 52 and 5 prolines, respectively, 99% and 92% of their nonprolyl amide resonances have been successfully assigned, demonstrating its robustness to address the assignment problem in large proline-rich IDPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.