Abstract
Graphene is an excellent piezoresistive material. The gauge factor of graphene mirrors the sensitivity of electromechanical devices. This paper mainly studies the gauge factors of different layers of graphene under different deformation conditions. Specifically, a theoretical model was combined with linearized Boltzmann transport equation, and the density function theory (DFT) to explore how the layer number of graphene affects sensitivity. The results show that monolayer graphene is slightly more sensitive than two-layer graphene, and significantly more sensitive than three-layer graphene and four- layer graphene. In particular, monolayer graphene remains highly sensitive under large deformation conditions, which gives monolayer graphene a significant advantage over other layers of graphene. Furthermore, a microelectromechanical system (MEMS) pressure sensor was proposed with monolayer graphene, and compared with previous similar sensors with multilayer graphene in terms of sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of New Materials for Electrochemical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.