Abstract

Because graphene is carbon material and has excellent mechanical characteristics, its use as ultrathin lubrication protective films for machine elements is greatly expected. The durability of graphene strongly depends on the number of layers and the load scale. For use in ultrathin lubrication protective films for machine elements, it is also necessary to maintain low friction and high durability under macroscale loads in the atmosphere. In this study, we modified the surfaces of both monolayer and multilayer graphene by fluorine plasma treatment and examined the friction properties and durability of the fluorinated graphene under macroscale load. The durability of both monolayer and multilayer graphene improved by the surface fluorination owing to the reduction of adhesion forces between the friction interfaces. This occurs because the carbon film containing fluorine is transferred to the friction-mating material, and thus friction acts between the two carbon films containing fluorine. On the other hand, the friction coefficient decreased from 0.20 to 0.15 by the fluorine plasma treatment in the multilayer graphene, whereas it increased from 0.21 to 0.27 in the monolayer graphene. It is considered that, in the monolayer graphene, the change of the surface structure had a stronger influence on the friction coefficient than in the multilayer graphene, and the friction coefficient increased mainly due to the increase in defects on the graphene surface by the fluorine plasma treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.