Abstract
Abstract A new distributed model-predictive control method is introduced, which is based on a novel distributed optimization algorithm, relying on a sensitivity-based coordination mechanism. Coordination and therefore overall optimality is achieved by means of a linear approximation of the objective functions of neighboring controllers within the objective function of each local controller. As for most of the distributed optimization methods, an iterative solution of the distributed optimal control problems is required. An analysis of the method with respect to its convergence properties is provided. For illustration, the sensitivity-driven distributed model-predictive control (S-DMPC) method is applied to a simulated alkylation process. An almost optimal control sequence can be achieved after only one iteration in this case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.