Abstract
How to design a set of optimal distributed load frequency controllers for a multi-area interconnected power system is an important but still challenging issue in the field of modern electric power systems. This paper presents an adaptive population extremal optimization-based extended distributed model predictive load frequency control method called PEO-EDMPC for a multi-area interconnected power system. The key idea behind the proposed method is formulating the dynamic load frequency control issue of each area power system as an extended distributed discrete-time state-space model based on an extended state vector, obtaining a distributed dynamic extended predictive model, and rolling optimization of real-time control output signal by adopting an adaptive population extremal optimization algorithm, where the fitness is evaluated by the weighted sum of square predicted errors and square future control values. The superiority of the proposed PEO-EDMPC method to a traditional distributed model predictive control method, a population extremal optimization-based distributed proportional-integral control algorithm and a traditional distributed integral control method is demonstrated by the simulation studies on two-area and three-area interconnected power systems in cases of normal, perturbed system parameters and dynamical load disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.