Abstract
It has been previously documented that the main features and sensing performance of electrograms (EGMs) recorded in implantable cardioverter defibrillators (ICDs) depend on lead configuration. Although this dependence has been ascribed to differences in lead sensitivity and spatial resolution, the quantification of these two properties on ICD has not yet been attempted. In this paper, an operative framework to study the spatial resolution of ICD transvenous leads is presented. We propose to quantify the spatial resolution of ICD transvenous leads based on a new characterization called lead resolution volume (ResV). We analyzed the sensitivity distribution and the ResV of two unipolar (tip-can and coil-can ) and two bipolar (true or tip-ring and integrated or tip-coil) ICD transvenous lead configurations. A detailed 3-D model of the human thorax based on the visible human man dataset was used to compute the lead sensitivity and computer simulations of simple cardiac dynamics were used to quantify the ResV. Differences in the sensitivity distribution throughout the ventricular myocardium (VM) were observed for each lead configuration. In our computer model of the human thorax, the ResV was found to comprise 7%, 35%, 45%, and 70% of the VM for true bipolar, integrated bipolar, tip-can unipolar, and coil-can unipolar ICD leads, respectively. Furthermore, our analysis shows that the spatial resolution depends on both lead sensitivity and cardiac dynamics, and therefore, it can vary for different heart rhythms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.