Abstract

Various studies have proved that PM2.5 pollution significantly impacts people’s health and the environment. Reliable models on pollutant levels and trends are essential for policy-makers to decide on pollution reduction. Therefore, this research presents the sensitivity analysis of the Bicubic Spline Smoothing (BSS) and Inverse Distance Weighting (IDW) models built for the PM2.5 monthly series from MERRA-2 Reanalysis collected during January 2010–April 2017 in the region of the Persian Gulf, in the neighborhood of the United Arab Emirates Coast. The models’ performances are assessed using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). RMSE, Mean Bias Error (MBE), and Nash–Sutcliff Efficiency (NSE) were utilized to assess the models’ sensitivity to various parameters. For the IDW, the Mean RMSE decreases as the power parameter increases from 1 to approximately 4 (the optimal beta value) and then stabilizes with a further increase. NSE values close to 1 indicate that the model’s predictions are very efficient in capturing the variance of the observed data. NSE is almost constant as a function of the number of neighbors and the parameter when β > 4. In BSS, the RMSE and NBE plots suggest that incorporating more points into the mean calculation for buffer points leads to a general decrease in model accuracy. Moreover, the MBE plot shows that the mean bias error initially increases with the number of points but then starts to plateau. The increasing trend suggests that the model tends to systematically overestimate the PM2.5 values as more points are included. The leveling-off of the curve indicates that beyond a certain number of points, the bias introduced by including additional points does not significantly increase, suggesting a threshold beyond which further inclusion of points does not markedly change the mean bias. It was also proved that the methods’ generalizability may depend on the dataset’s specific spatial characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.