Abstract

A hybrid system with a ceiling cooling (CC) system and a mechanical ventilation system has been extensively applied in modern office buildings with large sensible cooling loads. Both the chilled ceiling and supply air may greatly influence indoor air distribution in the office room. Therefore in this paper, indoor air distribution performances in a ceiling cooling room with underfloor air distribution (UFAD) or mixing ventilation (MV) were sensitively analyzed by numerical simulation. Indoor air distribution performances, which were evaluated by the heat removal effectiveness, contamination removal effectiveness and air diffusion performance index, were quantitatively analyzed by using the orthogonal experiment method. The results showed that when the supply air temperature was 18 °C-24 °C for CC + UFAD and 16 °C-21 °C for CC + MV, the heat removal effectiveness changed by 0.01 with 1 °C increment of supply air temperature or ceiling surface temperature, and the contamination removal effectiveness increased by 0.001-0.002 with 1 W/m2 increment of external sensible cooling load. Moreover, the air diffusion performance index increased by 0.6%-1.1% with 1 °C increment of supply air temperature, and it decreased by 0.02% with 1 W/m2 increment of internal sensible cooling load. Finally, formulas of heat removal effectiveness, contamination removal effectiveness and air diffusion performance index for CC + UFAD and CC + MV were obtained by fitting, and they may provide guidance for the optimal design and control of a hybrid system with a ceiling cooling system and a mechanical ventilation system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call