Abstract

This paper aims to enhance the speed of rigid overhead systems by investigating the impact of important parameters of the overhead system and pantograph on the interaction performance, specifically the contact force between the panhead of the pantograph and the contact wire of the overhead system. To accomplish this, this paper first builds a rigid overhead system model based on the finite element method. The pantograph–contact wire interaction simulation is achieved by including a three-stage lumped mass pantograph model. The Sobol sensitivity analysis method is utilised to determine the contribution of different parameters to the contact force standard deviation. Subsequently, an optimisation approach is used to minimise the contact standard deviation at various speeds by adopting five crucial parameters. The sensitivity analysis of 13 variables indicates that the span length, bending stiffness, and linear density of the conductor rail, and the masses of the pantograph head and upper frame are the most relevant variables for the contact force standard deviation. The quantification of each parameter’s contribution reveals that the increase in bending stiffness generally has a positive effect in reducing the contact force fluctuation, while the decreases in other variables are preferred. The optimisation analysis shows that the optimised contact force standard deviation decreases by 39.18%, 66.77%, and 61.02% at speeds of 90 km/h, 120 km/h, and 150 km/h, respectively, compared to the original values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call