Abstract
To solve the lack of reduced Blast furnace gas (BFG) mechanism under elevated pressure environment in numerical simulation, the present paper analyzes the sensitivity of every elementary reaction to combustion rate by using one dimensional laminar premixed reactor model. The steps with sensitivities larger than 0.1 are selected and the chemical kinetic parameters are revised by the method of weighted least squares fitting. The reduced 18-step mechanism which is specified to 0.1-3 Mpa is validated for laminar flame speeds, ignition delay times with available experiment data and GRI3.0 mechanism. Moreover, both the reduced and DRM-22 mechanisms are introduced into an experimental burner and an industrial gas turbine combustor simulation. The results of temperature and main species distribution illustrate that the 18-step mechanism is able to give a reasonable prediction combustion simulation. The 18-step mechanism lays the foundation of further studying the combustion of the low calorific value fuels at high pressure conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have