Abstract

AbstractA series of sensitivity experiments by the Weather Research and Forecasting (WRF) model is used to investigate the impact of model physics, vortex axisymmetric radial structure, and background wind on secondary eyewall formation (SEF) and eyewall replacement cycle (ERC) in three‐dimensional full physics numerical simulations. It is found that the vertical turbulent mixing parameterization can substantially affect the concentric ring structure of tangential wind associated with SEF through a complicated interaction among eyewall and outer rainband heating, radial inflow in the boundary layer, surface layer processes, and shallow convection in the moat. Large snow terminal velocity can substantially change the vertical distribution of eyewall diabatic heating to result in a strong radial inflow in the boundary layer, and thus, favors the development of shallow convection in the moat allowing the outer rainband convection to move closer to the inner eyewall, which may leave little room both temporally and spatially for a full development of a secondary maximum of tangential wind. Small radius of maximum wind (RMW) of a vortex and small potential vorticity (PV) skirt outside the RMW tend to generate double‐eyewall replacement and may lead to an ERC without a clean secondary concentric maximum of tangential wind. A sufficiently large background wind can smooth out an ERC that would otherwise occur without background wind for a vortex with a small or moderate PV skirt. However, background wind does not appear to have an impact on an ERC if the vortex has a sufficiently large PV skirt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call