Abstract

Carminic acid is a food colorant which concentration has to be controlled due to the possible negative health effects. Sensitive voltammetric method is developed for carminic acid determination using electrode modified with SeO2 nanoparticles (SeO2 NPs) and hexadecyltriphenylphosphonium bromide (HDTPPB) acting as dispersive agent for nanoparticles and electrode surface co-modifier. SeO2 NPs of 37–45 nm are uniformly distributed at the electrode increasing its electroactive area (41 ± 2 vs. 8.9 ± 0.2 mm2 for bare glassy carbon electrode (GCE)). Electrochemical impedance spectroscopy data confirm an 18.3-fold decrease of charge transfer resistance compared to GCE (12.7 ± 0.3 vs. 232 ± 7 kΩ, respectively). In differential pulse mode, the linear dynamic ranges of carminic acid are 0.010–2.5 and 2.5–10 μmol L−1 with a detection limit of 3.4 nmol L−1. The method is successfully employed in candies and lozenges for sore throat treatment. The approach is simple, reliable, and can be used as an alternative to chromatography in routine analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.