Abstract
Synthetic colorants, in particular tartrazine and brilliant blue FCF, are widely used in food chemistry and technology although they can give negative health effects of various severities. Therefore, sensitive, selective, simple, and reliable methods for the quantification of these dyes are required. A glassy carbon electrode (GCE) modified with manganese dioxide nanorods (MnO2 NR) dispersed in cetylpyridinium bromide gives a sensitive response to tartrazine and brilliant blue FCF in mixtures. Electrode modification provides a 7.9-fold increase in the electroactive surface area and a 72-fold decrease in electron transfer resistance. Simultaneous voltammetric quantification of colorants was performed in phosphate buffer pH 7.0 in differential pulse mode. The linear dynamic ranges of 0.10–2.5 and 2.5–15 µM of tartrazine and 0.25–2.5 and 2.5–15 µM of brilliant blue FCF were obtained with the limits of detection of 43 and 41 nM, respectively. The advantage of the sensor developed is the high selectivity of response in the presence of typical interferences (inorganic ions, saccharides, ascorbic and sorbic acids) and other food colorants (riboflavin, indigo carmine, and sunset yellow). The practical applicability of the approach is shown in soft and isotonic sports drinks and is validated by comparison to chromatography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.